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Abstract

The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration
between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until
certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft
vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the
bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some
linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed
and discussed. Important conclusions about the application of integral controllers, responsible for changing
the rotor-bearing equilibrium position and consequently the ‘‘passive’’ oil film damping coefficients, are
achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor,
where the PD and the non-linear P controllers show better performance for the frequency range of study
(0–80Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active
lubrication is also investigated, illustrating clearly one of its most promising applications.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Taking advantage of the oil film load capacity in hydrodynamic bearings as an active device, in
order to improve the machine dynamic behaviour, is an idea that has been investigated by many
authors during the last two decades (Refs. [1–15]). Initially, the bearings were mounted on linear
actuators ([1,2]) and the control action was indirect. In other words, hydraulic or electromagnetic
actuators dynamically moved the bearing housing, consequently causing changes in the gap and
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the hydrodynamic conditions. However, the fact that the control system must support the bearing
house, and the rotor itself, requires the actuators to be very robust. This could be a drawback in
applying such a system to heavy equipment (hydro-turbines, turbo-generators and compressors).
An alternative solution was to locate the actuators inside tilting-pad bearings where, by hydraulic
chambers, the position of the shoes could be changed, and thus the machine rotor dynamics
altered [4]. This active bearing had the disadvantage of the complexity of its chambers, together
with the structural limitations of their components. Hence, active bearings based on injecting
pressurized oil directly into the oil film began to be investigated due to its simplicity of concept
[5,7,8].
The actively lubricated bearing under investigation is built from four tilting pads, in a load-on-

pad configuration, as shown in Fig. 1. The control action over the rotating shaft is made by
injecting oil into the bearing gap through machined bores in the pads (Fig. 2). By coupling servo
valves to the pads in the vertical and horizontal directions (Fig. 1), the pressure of the injected oil
can be controlled. Thus, the hydrodynamic pressure and temperature distribution in the gap
(main mechanism of bearing load capacity) may be altered among the different pads [9–11].
Rotating shaft vibration can also be attenuated with help of control techniques as can be seen in
Santos and Scalabrin [12]. It is important to emphasise that conventional lubrication is still the
main source of load capacity in this hybrid bearing, and the use of radial active lubrication in a
special type of journal bearing, the tilting-pad journal bearings (TPJB), has a strong advantage
because there remain no cross-coupling effects between orthogonal directions [14].
The aim of this work is to investigate the efficiency of some linear and non-linear control

techniques applied to a rotor-bearing system supported by an actively lubricated tilting-pad
bearing. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller are
analysed and discussed, recalling that integral controllers are able to change the operational
position of the rotor inside of the bearing and, consequently, are also able to change the oil film
coefficients (damping and stiffness). The control laws of linear PI, PD and PID controllers and of
a non-linear P controller are deduced and added to the non-linear equations of motion which
describe the system. Numerical simulations are performed in order to obtain the system unbalance

Fig. 1. Active tilting-pad bearing with injection system.
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and frequency responses, and the efficiency of the control system in reducing vibration is analysed.
The theoretical study presented here is based on a test rig, which was constructed in the State
University of Campinas, and is schematically shown in Fig. 3. The system characteristic data can
be seen in Table 1. Experimental results will be presented in the near future.

2. Mathematical modelling of the rotor-bearing system

2.1. Rigid rotor

The rotor of the system studied in this work consists of a shaft and a disk (Fig. 3). This shaft
disk sub-system is considered rigid in the frequency range of study (0–80Hz). Therefore, one can
determine four points in the shaft upon which external forces act: the coupling point, where the
driving torque is applied (point A); the ball bearing position (point R); the rotor centre of gravity
position (point O); and the active tilting-pad bearing position (point H)—see Figs. 3 and 4.

Fig. 2. Schematic view of the oil injection system of the active tilting-pad bearing.

Fig. 3. Rotor-active bearing system: 1—electric motor ; 2—coupling ; 3—ball bearing ; 4—shaft ; 5—disk ; 6—active

bearing ; 7—pipeline ; 8–9—servo valves.
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In Fig. 4, Ay and Az are the coupling forces, FOy
and FOz

are the external forces applied to the
rotor centre of mass, and Fy and Fz are the hydrodynamic forces of the active tilting-pad bearing.
By using auxiliary reference frames, one can describe the shaft angular displacements (f; b and

g) around point R by following consecutive Kardan rotations: firstly around Z (inertial reference

Table 1

Rotor-bearing and hydraulic system characteristic data

Parameter Symbol Value Unit

Distance from A to R rAR 0.1360 m

Distance from R to O rRO 0.2078 m

Distance from R to H rRH 0.3740 m

Distance from R to disk rRD 0.2215 m

Shaft polar moment Ixx 0.2038 kg.m2

Shaft lateral moment Iyy; Izz 0.2981 kgm2

Shaft radius (point H) R 0.0250 m

Pad polar moment Is 2:57� 10�4 kgm2

Assembled clearance h0 150.0 mm
Pre-load factor mp 0.150

Oil dynamic viscosity at 401 m 0.027 N s/m2

Oil compressibility factor bf 8:0� 108 N/m2

Pipeline length lT 0.500 m

Pipeline diameter dT 0.001 m

Pipeline inner volume V0 3:93� 10�7 m3

Servo valve input signal range umax
min 70:25 V

Servo valve eigenfrequency oV 320.0 Hz

Servo valve damping factor xV 0.48

Servo valve gain KV 8:91� 10�6 m3/s V

Linearization coefficient (experimental) KPQ 1:13� 10�12 m3/s Pa

Fig. 4. Points of acting forces (A; R; O; H) and auxiliary reference frames used in the rigid model of the shaft-disk sub-

system.
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frame), secondly around Y1 (auxiliary reference frame B1) and finally around X2 (auxiliary
reference frame B2; attached to the shaft as illustrated in Fig. 4). By applying Euler’s equation,
considering the linear acceleration of point R as zero, one achieves the non-linear equations of
motion of the rigid rotor:

.b ¼
1

Iyy

Ixx � Izzð Þ’g2sin b cos bþ rARFAy
� rROFOy

� rRHFy

� �
sin b sin g

�
� Ixx

’f’g cos bþ rARFAz
� rROFOz

� rRHFz

� �
cos bþ Mb

�
;

.g ¼
1

Izz cos b
Iyy þ Izz � Ixx

� �
’b’g sin bþ Ixx

’f ’b
�

þ �rARFAy
þ rROFOy

þ rRHFy

� �
cos gþ Mg

�
ð1Þ

In Eq. (1), the rotor spin ’f is a known parameter, Mb and Mg are external moments
(excitation), rAR is the distance between points A and R; rRO is the distance between points R and
O; rRH is the distance between points R and H; and Ixx; Iyy; and Izz are the polar and lateral
moments of inertia of the shaft, in reference to point R:

2.2. Active tilting-pad bearing

The active bearing is composed of four tilting pads: two in the horizontal and two in the vertical
directions (Y - and Z-axis of the inertial reference frame—Fig. 1). The equation of motion of the ith
pad can be written as

Is .ai ¼ Mai
; ð2Þ

where Is is the pad rotational inertia, ai is the tilting angular displacement of the ith pad around its
pivot, and Mai

is the resultant moment of the hydrodynamic forces in the i-th pad.
The hydrodynamic forces are calculated by integrating the oil pressure distribution over

each pad surface area (Fig. 5(a)) and decomposing it into normal and tangential forces (Fig. 5(b)),

(a) (b)

Fig. 5. Integration of forces acting on the ith pad and on the shaft: (a) integration of hydrodynamic pressure

distribution on the pad; (b) force components acting on the pad and on the shaft.
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as follows:

Fni
¼

Z
a

pi cos z da; Fti
¼

Z
a

pi sin z da;

where Fni
is the hydrodynamic force acting perpendicular to the pad surface, Fti

is the
hydrodynamic force acting tangential to the pad surface, pi is the oil pressure in the gap between
the rotor and the ith pad, and z is the angle of curvature of the pad.
Thus, the resultant moment of the hydrodynamic forces on pads is given by

Mai
¼ �Fti

Ds;

where Ds is the distance between the pad surface and its pivoting point (Fig. 5(a)). The
hydrodynamic forces Fy and Fz; acting on the shaft, are calculated by projecting the
hydrodynamic forces acting on the four bearing pads into the directions Y and Z; considering
the angular position of each pad (ai):

Fy ¼ �
X4
i¼1

Fni
cos ji þ ai

� �
� Fti

sin ji þ ai

� �� �
;

Fz ¼ �
X4
i¼1

Fni
sin ji þ ai

� �
þ Fti

cos ji þ ai

� �� �
;

where ji is the angular position of the ith pad pivot around the bearing housing (Fig. 5(b)).
The oil pressure distribution is obtained by solving numerically the modified Reynolds’

equation

@

@ %x

h3i
m
@pi

@ %x

� �
þ

@

@%z

h3i
m
@pi

@%z

� �
�

3

ml0
F %x; %zð Þ pi ¼ 6U

@hi

@%z
þ 12

@hi

@t
�

3

ml0
F %x; %zð ÞPi; ð3Þ

where hi is the gap between the rotor and the ith pad, m is the oil dynamic viscosity, l0 is the
orifice’s length, U is the linear velocity of the rotor surface, Pi is the injection pressure in the ith
pad (active lubrication), and Fð %x; %zÞ is a positioning function of the orifices on the pad surface.
Eq. (3), and the previous expressions, have been thoroughly deduced in the work of Santos and

Russo [9].

2.3. Hydraulic system

The hydraulic system consists of a reservoir, two pumps and two servo valves. One of the
pumps supplies the conventional lubrication to the bearing. The second pump feeds the injection
system with high pressurised oil. The purpose of the servo valves is to control the pressure at
which oil is injected, through the pad bores, into the bearing gap (Fig. 2).
According to Thayer [16] and Rashidi and Dirusso [17], the dynamics of the oil flow through a

servo valve may be described by a second order equation. For the two servo valves, they are

.QVI
þ 2 xVI

oVI
’QVI

þ o2
VI

QVI
¼ o2

VI
KVI

uIðtÞ;

.QVII
þ 2 xVII

oVII
’QVII

þ o2
VII

QVII
¼ o2

VII
KVII

uIIðtÞ; ð4Þ
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where QV is the oil flow through the servo valve under null loading (open ducts), xV is the
damping factor of the servo valve, oV is the eigenfrequency of the servo valve, KV is the gain of
the servo valve, uðtÞ is the control signal, and indices I and II identify the servo valves connected to
the pads in the horizontal and vertical directions respectively.
The oil pressure in the ports of the servo valves is obtained by solving the following equations:

V0

bf

’P1 þ KPQI
þ

pd4
T

128mlT

� �
P1 � KPQII

P3 � QVI
¼

pd4
T

128mlT
%p1;

V0

bf

’P3 � KPQI
P1 þ KPQI

þ
pd4

T

128mlT

� �
P3 þ QVI

¼
pd4

T

128mlT
%p3; ð5Þ

V0

bf

’P2 þ KPQII
þ

pd4
T

128mlT

� �
P2 � KPQII

P4 � QVII
¼

pd4
T

128mlT
%p2;

V0

bf

’P4 � KPQII
P2 þ KPQII

þ
pd4

T

128mlT

� �
P4 þ QVII

¼
pd4

T

128mlT
%p4; ð6Þ

where Pi is the oil injection pressure in the ith pad, %pi is the average hydrodynamic pressure in the
gap of the ith pad, KPQ is an empirical constant, V0 is the pipeline inner volume, bf is the oil
compressibility factor, and dT and lT are the diameter and length of the pipeline.
The constant KPQ states the relationship between the oil flow through the servo valve and the

pressure difference at its ports, when the control signal is null: KPQ ¼ @Q=@DP
		
u¼0: It can be

obtained experimentally by increasing the pressure difference at the ports of the servo valve and
measuring the resultant oil flow.
Eqs. (4)–(6) represent a relationship between the control signal applied to each of the servo

valves and the resultant injection pressures at their respective ports. They are obtained by
applying a first order approximation, assuming laminar flow conditions in the pipeline, and
considering the oil compressibility effects. The deduction of these equations is presented in detail
in Nicoletti and Santos [15].

3. Control techniques

Eqs. (1), (2) and (4)–(6) form the set of non-linear equations of motion of the rotor-bearing
system in study. Once the mathematical model of the system is deduced, one has to choose the
control laws which will be used in the feedback. The laws of four different controllers are deduced
below.

3.1. PI at maximum input signal

A PI controller is classically defined by the expression

u ¼ Kp e þ
Kp

Ti

Z
e dt; ð7Þ

where e is the error between the output and the reference signals, Kp is the proportional gain, and
Ti is the integral time.
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By differentiating Eq. (7) and writing it in a discrete form by finite differences, one has

’u ¼Kp ’e þ
Kp

Ti

e )
u � un

T
¼ Kp

e � en

T
þ

Kp

Ti

e ) u ¼ un þ Kp e � en
� �

þ Ki e; ð8Þ

where u is the control signal at a certain instant of time, un is the last sample value of the control
signal (instant t � T), en is the last sample error, T is the sampling period, and Ki is the integral
gain (Ki ¼ KpT=Ti).
The error is given by the difference between the actual shaft position and the desired shaft

position. For the two directions in the rotor-bearing system, one has

eY ¼ Y � YR; eZ ¼ Z � ZR; ð9Þ

where YR and ZR are the reference values of shaft position.
Hence, by inserting Eq. (9) into Eq. (8), one arrives to the PI control laws for the two servo

valves, as follows:

uIðtÞ ¼ un

IKp Y � YRð Þ � Y n � YR

� �� �
þ Ki Y � YRð Þ;

uIIðtÞ ¼ un

IIKp Z � ZRð Þ � Zn � ZR

� �� �
þ Ki Z � ZRð Þ; ð10Þ

where Y and Z are the linear shaft displacements at point H (Y ¼ rRHg , Z ¼ �rRHb), and Y n

and Zn are the last sample values of these displacements.
In order to apply Eq. (10) to the problem in study, the gains were chosen to have maximum

control signal (u ¼ 0:25V) when the error is maximum (Y or Z � h0 ¼ 150 mm)—see system
characteristics in Table 1. Since this occurs for Kp ¼ 1667V/m and Ki ¼ 5V/m, the PI control law

at maximum input signal is thus given by

uIðtÞ ¼ un

I þ 1667 Y � Y n
� �

þ 5 Y ;

uIIðtÞ ¼ un

II þ 1667 Z � Zn
� �

þ 5Z; ð11Þ

where one assumes as reference the bearing centre (YR ¼ ZR ¼ 0).

3.2. PD upon system linearization

Assuming that the rotor displacements are small (sin bEb; cos bE1; sin gEg; cos gE1 and ’g2b;
’b’gb and bg negligible) one can linearise the equations of motion (Eqs. (1), (2) and (4)–(6)) in order
to calculate the PD controller gains. Thus, the equations of motion of the bearing system can be
written in the form

I .cþGð ’fÞ ’c ¼Mh þMe; ð12Þ

where I is the inertia matrix, Gð ’fÞ is the gyroscopic matrix, Mh is the vector of hydraulic
moments, Me is the vector of external moments, and c is the vector of angular displacements
(c ¼ b gf gT).
The vector of hydraulic moments can be decomposed into a vector of linearised moments

caused by the oil film (hydrodynamic forces) and a vector of linearised moments caused by the oil
injection (hydrostatic forces – hydraulic system). Hence, one has

Mh ¼ f �D ’q� K q g þ K uf g; ð13Þ
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where D and K are the damping and stiffness matrices of the oil film, q is the vector of linear
displacements of the rotor (q ¼ Y Zf gT), u is the control vector (u ¼ uI uIIf gT ), and K is the
matrix which correlates the control vector with the resultant hydrostatic forces from the injection
(numerically obtained).
By using the relationships between angular and linear displacements of the shaft at point H:

Y ¼ rRHg; Z ¼ �rRHb; ð14Þ

one can insert Eq. (13) into Eq. (12). Rearranging it, one arrives to the state formulation of the
problem:

’C ¼ ACþ B uþ Ze: ð15Þ

By applying a state feedback control vector of the form

u ¼ �HC; ð16Þ

and neglecting the state vector of external moments (Ze), from Eq. (15) one has

’C ¼ A� BHð ÞC ¼ LC: ð17Þ

By giving a set of desired eigenvalues, which will be the desired system eigenvalues, one has the
desired coefficients of the characteristic equation of L: The gain matrix H can be determined by
comparing the coefficients of the characteristic equation of L to those desired ones. If the gain
matrix H is a full matrix (coupled control signals), then the solution is not unique and different
gain matrices may lead to similar results [18,19]. In this work, the control signals are assumed to
be uncoupled (uI ¼ uIð’g; gÞ and uII ¼ uIIð ’b; bÞ), thus making the gain matrix unique.
The stiffness (K) and damping (D) matrices of the oil film are calculated considering that the

additional radial injection is also taking place, based on the differential principle of the servo
valves. In other words, setting the geometric and operational condition of the rotor-bearing
system (Sommerfeld number S), the equilibrium position of the rotor-bearing system in a certain
direction (eccentricity e) is altered by statically changing the injection pressure in the pads
mounted in this direction (pads #1 and #3 for Y direction and pads #2 and #4 for Z direction—
Fig. 1). Therefore, in this case, the equilibrium position is also function of the control signal,
which dictates the injection pressure in the pads (ey ¼ ey uIð Þ; ez ¼ ez uIIð Þ). For each new
equilibrium position, the rotor-bearing system is perturbed, and stiffness and damping coefficients
are calculated by the formulation proposed by Springer [20], by choosing a condensation (or
excitation) frequency o:
Fig. 6 illustrates the dependency of the coefficients Kyy; Kzz; Dyy; Dzz and of the equilibrium

position in the Z direction (ez) on Sommerfeld number and control signal uII; for the hybrid
lubrication case. It is important to point out that K and D are also a function of frequency o: An
excitation frequency of 80Hz was used since this is the maximum frequency in the range of study
in this work.
Hence, for a rotating frequency of 30Hz (S ¼ 0:2576), control signal uII ¼ 0V ; an excitation

frequency of 80Hz, and considering the rotor weight (the case in study), the oil film coefficients
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Fig. 6. Eccentricity (ez) and dynamic coefficients as a function of the Sommerfeld number and control signal uII in the

direction of static loading (weight in the Z direction, excitation frequency o ¼ 80Hz, uI ¼ 0V, eyE0): (a) eccentricity

in the Z direction; (b) stiffness in the Y direction; (c) stiffness in the Z direction; (d) damping in the Y direction; (e)

damping in the Z direction; —– , uII ¼ 0V; – – – , uII ¼ �0:1V; – � – , uII ¼ �0:11V.
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are as follows:

KyyE1:2� 105 N=m; DyyE1:4� 103 N=ðm=sÞ;

KzzE4:1� 106 N=m; DzzE2:6� 104 N=ðm=sÞ;

KyzEKzyEOð103Þ; DyzEDzyEOð101Þ:

Matrix K is obtained numerically and, for the case in study, given by

K ¼
�1176:4 0

0 �1176:4

" #
:

Using the procedure described above, by choosing the set of eigenvalues: s1 ¼ �1000; s2 ¼
�900; s3 ¼ �800; and s4 ¼ �700; in order to achieve an over-damped system, one arrives to the
gain matrix

H ¼
0 0:61979 0 444:44

�0:79368 0 �443:18 0

" #

which results in PD control laws of the form:

uIðtÞ ¼ 0:61979’gþ 444:44g; uIIðtÞ ¼ �0:79368 ’b� 443:18b: ð18Þ

Using expression (14), one arrives at the PD control law obtained upon system linearization, as
follows:

uIðtÞ ¼ 1:657 ’Y þ 1188:34Y ; uIIðtÞ ¼ 2:122 ’Z þ 1184:97Z: ð19Þ

3.3. PID upon system linearization

The PID controller is classically defined as

u ¼ Kd ’e þ Kpe þ
Kp

Ti

Z
e dt; ð20Þ

where Kd is the derivative gain.
Differentiating expression (20), and writing it in a discrete form by using finite differences

similarly to Eq. (8), one has

’u ¼ Kd .e þ Kp ’e þ
Kp

Ti

e )
u � un

T
¼ Kd

’e � ’en

T
þ Kp

e � en

T
þ

Kp

Ti

e

) u ¼ un þ Kd ’e � ’en
� �

þ Kp e � en
� �

þ Ki e: ð21Þ

Inserting expressions (9) into Eq. (21), one has for the two servovalves:

uIðtÞ ¼ un

I þ Kd ð ’Y � ’YnÞ þ Kp Y � Yn
� �

þ KiY ;

uIIðtÞ ¼ un

II þ Kd ð ’Y � ’YnÞ þ Kp Z � Zn
� �

þ KiZ: ð22Þ
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By using the gain calculated in the previous section, and inserting the integral term, one arrives at
the PID control law as follows:

uIðtÞ ¼ un

I þ 1:657ð ’Y � ’YnÞ þ 1188:34ðY � Y nÞ þ 5Y ;

uIIðtÞ ¼ un

II þ 2:122ð ’Z � ’ZnÞ þ 1184:97ðZ � ZnÞ þ 5Z; ð23Þ

where one assumes as reference the bearing centre (YR ¼ ZR ¼ 0).

3.4. Non-linear proportional control

In the active bearing in study, the shaft positions (Y and Z) depend non-linearly on the control
signal uðtÞ: In the case of null external forces, this non-linear relationship can be computed by
simply varying the control signal, and observing the resultant shaft displacements, for a given
rotating frequency ’f: Thus, one can arrive at expressions in the form:

Y ¼ Y ðuI ; ’fÞ; Z ¼ ZðuII; ’fÞ:

When the shaft presents a certain displacement due to the application of a given control signal,
it means that the hydrostatic and hydrodynamic forces in the bearing, due to the oil injection
(control system), are acting on the shaft and forcing it to the resultant position. Therefore, one can
infer that one can centre the shaft in the bearing by applying the same forces on the opposite
direction. This can be done by using the inverse relationship between the displacements and the
control signals:

uI ¼ uIðY ; ’fÞ; uII ¼ uIIðZ; ’fÞ:

Hence, for a given shaft position (Y ;Z), one can use the inverse relationships as non-linear
control laws to calculate the necessary input signals to the servo valves. As a result, the
hydrostatic forces of the injection system will compensate the forces acting on the shaft, and
locate the shaft back to the bearing centre.
For a rotating frequency of 30Hz and using the system parameters shown in Table 1, one

arrives at the following non-linear proportional control laws:

uIðtÞ ¼ 3:1� 104Y 5 � 4:17� 102Y 3 þ 1:54Y ;

uIIðtÞ ¼ 3:1� 104Z5 � 4:17� 102 Z3 þ 1:54Z; ð24Þ

where the coefficients of expression (24) are given in V=mm5; V=mm3 and V=mm respectively, and
were obtained by using interpolation routines of software MATLABs:

4. Numerical results

The system of equations of motion (Eqs. (1), (2) and (4)–(6)) is integrated in the time domain
with help of the software MATLABs: The modified Reynolds’ equation (3) is also solved and the
pressure distribution integrated by using this software. For that, a two-dimensional uniform grid
is created over each pad surface and composed of 42 points in the tangential direction (direction
of shaft rotation) and 31 points in the axial direction of shaft, where central approximations of the
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finite difference method are applied. The parameter values used in the numerical simulations of
the active system are shown in Table 1.

4.1. Frequency response

In the case of external excitation, the exciting moments are given as

Mb ¼ �Feex sinðotÞ; Mg ¼ Feex cosðotÞ;

where Fe is the force amplitude, ex is the distance between the origin (point R—Fig. 4) and the
force application point, and o is the excitation frequency. For the case in study, ex ¼ rRD

(excitation is applied to the disk position in the shaft).
Fig. 7 shows the peak-to-peak frequency response functions (FRFs) of the passive system

(injection system turned off), running at a rotating frequency of 30Hz and subjected to shaft
weight (Sommerfeld number S ¼ 0:2576), for dynamic excitation loads of 1, 10 and 50N. As one
can see, for small amplitudes of excitation (between 1 and 10N), the system may be considered
almost linear (similar FRFs), characterized by large displacements in the Y direction (horizontal)
and small displacements in the Z direction (vertical). The small displacements in the Z direction
are caused by the static loading (weight), which forces the rotor towards the pad, thus diminishing
the gap and increasing the damping in this direction (Fig. 6).
For the case of an excitation of 50N, the frequency response changes, showing a more damped

system behaviour (lower values at resonance, both in the Y and Z directions—Fig. 7). This is
caused by the increase of exciting force, which results in a decrease of the bearing gap between the
rotor and the pads, thus rising the damping and affecting the response. Hence, the performance of
the linear and non-linear controllers (Eqs. (11), (19), (23) and (24)) are investigated for the cases of
1 and 50N of excitation amplitude, where the system non-linearities are more evident.
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Fig. 7. FRFs of the passive system (peak-to-peak)—quasi-linear and non-linear behaviours ( ’f ¼ 30Hz, S ¼ 0:2576):
—– , Fe ¼ 1N; – – – , Fe ¼ 10N; – � – , Fe ¼ 50N.

R. Nicoletti, I.F. Santos / Journal of Sound and Vibration 260 (2003) 927–947 939



Figs. 8 and 9 show the FRFs obtained by using the active bearing system under the deduced
control laws. For both cases of excitation (Fe ¼ 1 and 50N), all the control strategies managed to
reduce vibration amplitudes sensibly in the Y direction (horizontal), keeping the amplitudes in the
Z direction (vertical) at small values. This vibration amplitude reduction is remarkable near
system resonance, at 20Hz (Y direction), although, at higher exciting frequencies (above 60Hz),
some of the controllers presented a worse performance compared to the passive case.
By analysing the results in the Z (vertical) direction, one can see that the controller

performances were not as efficient as those obtained in the Y (horizontal) direction. One has
achieved higher amplitude responses compared to the passive case, being the proportional non-
linear controller, the only one to reduce vibration at the resonance in this direction, in both cases
of excitation (1 and 50N). The use of the PD controller resulted to response amplitudes of the
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Fig. 8. FRFs of the passive and active systems (peak-to-peak)—Quasi-linear behaviour (Fe ¼ 1N, ’f ¼ 30Hz,

S ¼ 0:2576): (a) Y direction (horizontal); (b) Z direction (vertical); —– , passive; –%– , PI; –�– , PD; –3– , PID; –W– ,

non-linear P.
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Fig. 9. FRFs of the passive and active systems (peak-to-peak)—non-linear behaviour (Fe ¼ 50N, ’f ¼ 30Hz,

S ¼ 0:2576): (a) Y direction (horizontal); (b) Z direction (vertical); —– , passive; –%– , PI; –�– , PD; –3– , PID;

–W– , non-linear P.
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same order of those obtained in the Y direction and, additionally, a tendency to present response
values near to those of the passive case at higher frequencies. Controllers PI and PID presented
poorer performances in the Z direction, with higher amplitude responses compared to those
obtained in the Y direction.
This worse performance of the active system in the Z direction can be explained by analysing

the rotor equilibrium position in the bearing, resulted from the control strategies (Table 2). In the
passive case, the rotor presents a certain eccentricity in the bearing due to the static loading
(weight). As a consequence, the bearing gap in the loading direction is decreased, thus enhancing
the damping (see Fig. 6). This fact explains the difference of amplitude responses in the Y and Z
directions for the passive case, in Fig. 7. The worse controllers in this frequency response analysis
are those which eliminate the rotor eccentricity in the bearing (see Table 2). The PI and PID
controllers centre the shaft in the bearing, whereas the other controllers do not. The fact of
suppressing rotor eccentricity tends to decrease the bearing damping in the direction of this
eccentricity (see Fig. 6(e)). In fact, the lowest damping level is achieved when the rotor is centred
in the bearing (see Figs. 6(a) and (e)). As a result, this damping reduction has to be overcome by
the controllers. In this study, the proposed PI and PID controllers were not robust enough to
recover the damping loss due to the rotor centring. Thus, the resulted response was higher than
that of the passive case. The PD and non-linear P controllers had a better performance in the Z
direction, since there was still some rotor eccentricity in the bearing (Table 2). As a matter of fact,
the non-linear P controller, which had the best performance in reducing vibration in the Z
direction (Figs. 8 and 9), is the one that presented the largest rotor eccentricity among those
studied strategies.
Hence, for the adopted conditions and frequency range of study, the proposed PD and the non-

linear P controllers are better suited to reduce vibration in the considered rotating system, with
help of an active hybrid bearing. However, it is important to note that the control laws with
integral terms (PI and PID) may also lead to satisfactory results whenever the control system has
enough power to supply to the system, in order to overcome the damping loss due to rotor
centring.

4.2. Unbalance response and instability

In the case of an unbalanced system, the exciting moments are given as

Mb ¼meexey
.f cosf� ’f2 sinf

� �
;

Mg ¼meexey
.f sinfþ ’f2 cosf

� �
;

Table 2

Rotor equilibrium positions resulted from the control strategies in study

Controller Passive PI PD PID Non-linear P

Rotor eccentricity Y=h0 B 0 B 0 B 0 B 0 B 0

Z=h0 �0.59 B 0 �0.45 B 0 �0.60
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where me is the unbalance lumped mass, and ex and ey are the co-ordinates of the unbalance in
reference to the shaft.
For the case in study and an unbalance in the disk position, one has me ¼ 5g ex ¼ rRD; ey ¼

5 mm:
Hence, for the passive case (no control action), under null static loading (high Sommerfeld

number condition), one achieves the system unbalance response shown in Fig. 10.
In Fig. 10, the system clearly vibrates at a synchronous frequency (typical of unbalanced

systems), until the value of 47Hz is reached. Beyond this limit, the system presents whirl
instability, at a sub-synchronous frequency near half the rotating frequency, with remarkable
increase of vibration amplitude. Fig. 11 shows the behaviour of the shaft in the time domain for
rotating frequencies of 30Hz (below stability limit) and 60Hz (above stability limit), where the
increase in vibration amplitude can be readily seen.
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Fig. 10. Waterfall diagram of unbalance response—passive case under null static loading.
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Fig. 11. Time response of the passive system under unbalance—whirl phenomenon at 60Hz: (a) ’f ¼ 30Hz; (b)
’f ¼ 60Hz.
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Whirl and whip instability in hydrodynamic bearings is extensively discussed in the literature,
among other works in Muszynska [21]. In the case of tilting-pad bearings, it has been always
believed that tilting-pad bearings were unconditionally stable, since they do not present cross-
coupling effects. However, experimental results showed that this kind of bearing is not free from
instability phenomena (mainly whirl instability), under certain operational conditions [22,23].
According to literature, these conditions are low pre-load factor and low static loading [24,25]. In
the numerical simulations presented in this section, the pre-load factor is low (mp ¼ 0:15) and the
static loading is null, thus being propitious conditions for the appearance of instability
phenomena. It is interesting to highlight that static bearing loading close to zero can occasionally
happen in radial compressors due to disposition of intake, and discharge and aerodynamic effects.
The solution to these instability problems is simply a matter of changing operational conditions

by increasing the pre-load or the static loading. However, when it is not possible, it is interesting
to investigate the performance of the rotor-bearing system, operating with a bearing lubricated
actively, in such an adverse condition. Hence, by applying the control laws deduced in this work
and the active bearing under study, one achieves the unbalance responses of the system under the
same operational conditions of the passive case, as shown in Fig. 12.

(a) (b)

(c) (d)

Fig. 12. Unbalance response functions of the active systems—null static loading: (a) PI; (b) PD; (c) PID;

(d) non-linear P.
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As can be seen in Fig. 12, the whirl components in the unbalance response are eliminated by
using all the controllers under study. As a consequence, the system vibrates at the synchronous
frequency, even for frequencies above 47Hz, which indicates that the stability limit was shifted to
a higher value by the control action of the bearing. By comparing the amplitude responses
(Fig. 13), one can see this shift of the stability limit in the active cases, since rotor vibration
remained under reasonable limits above the rotating frequency of 47Hz.
Fig. 14 shows the rotor vibration in time domain for the cases of rotating frequencies of 30 and

60Hz, under passive and active conditions. The control system was activated at the instant
t ¼ 0:5 s, or if the rotor amplitude (Y=h0 or Z=h0) reached values above 70:2: The elimination of
whirl instability by the active system can be easily seen in Fig. 14, for the rotating frequenciy of
60Hz, and vibration reduction is also achieved for the rotating frequency of 30Hz. In general, all
the controllers managed to reduce rotor vibration successfully, in the frequency range of study,
being activated at t ¼ 0:5 s, or if the amplitude (Y=h0 or Z=h0) was above 70:2:

5. Conclusion and future aspects

The active tilting-pad bearing with oil injection through the pads was presented and modelled.
Some linear and non-linear control techniques were adopted and their respective control laws
were deduced. The performances of the controllers in reducing rotor vibration are compared
through unbalance and frequency response analyses.
In the unbalance response analysis, all the studied controllers managed to reduce significantly

rotor vibration. The whirl instability which occurred in the system, due to the adopted operational
conditions (high Sommerfeld number, low pre-load factor and low static loading), was eliminated
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Fig. 14. Time response functions of the passive and active systems—control activated at t ¼ 0:5 s or Y=h0X70:2: (a)
’f ¼ 30Hz, passive; (b) ’f ¼ 60Hz, passive; (c) ’f ¼ 30Hz, PI; (d) ’f ¼ 60Hz, PI; (e) ’f ¼ 30Hz, PD; (f) ’f ¼ 60Hz, PD;

(g) ’f ¼ 30Hz, PID; (h) ’f ¼ 60Hz, PID; (i) ’f ¼ 30Hz, non-linear P; (j) ’f ¼ 60Hz, non-linear P.
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by the active system. In addition, a decrease of vibration amplitude was achieved and the stability
limit was shifted towards higher frequencies.
In the frequency response analysis, unsatisfactory results were obtained by using the proposed

PI and PID controllers, specially in the loading direction (vertical). The most efficient controllers
were those which did not eliminate the rotor eccentricity in the bearing. The fact of suppressing
rotor eccentricity tends to decrease the oil film damping in the direction of this eccentricity. As a
result, such a damping reduction has to be overcome and compensated by the controllers. The
proposed PI and PID controllers were not able to achieve this task, resulting in higher responses
than those of the passive system. However, it is important to note that the control laws with
integral terms (PI and PID) may also lead to satisfactory results whenever the control system has
enough power to supply to the system, in order to overcome the damping loss due to rotor
centring.
For the design of controllers with integral part, it is of significant importance to analyse the

K–D diagrams, like those present in Fig. 6, to assure that the integral part of the controller will
not contribute to the reduction of the oil film damping. In the case of tilting-pad journal bearings,
only the coefficients of the main diagonal of stiffness and damping matrices are of interest, since
the cross-coupling coefficients are negligible. In the case of other actively lubricated journal
bearings, this analysis becomes more complex, since the cross-coupling coefficients must not be
disregarded.
Hence, the proposed non-linear P and the PD controllers were better suited to reduce vibration

amplitudes of the rotor-bearing system, in the frequency range of study. Tests are being led in the
rig illustrated in Fig. 3, in order to experimentally validate the theoretical results presented in this
work.
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